

Banking

WB Police

WB Civil Services

Other Competitive Exams

Quantitative Aptitude - Mensuration Date: 21st Dec 2023

English

- Q:1 Find the volume of a toy of total height 108 cm made by joining a conical hat on a cylindrical bottle of radius 56 cm. (in cm³)
- **1.** 1419624
- 2.1823734
- 3.1966723
- 4.1035600
- Q:2 Fourteen spheres of equal radii are made by melting an iron cuboid of dimension [16 cm × 1] cm × 9 cm]. Find the radius of each iron sphere.
- **1.** 3 cm
- 2. 2 cm
- 3.5 cm
- 4. 4 cm
- Q:3 The diameter of a cylindrical tower is 32 meters and its height is 42 meters. The cost of painting the curved surface of the cylinder at 1.5 rupees per square meter is:
- 1. Rs 6336
- 2. Rs 4224
- 3. Rs 8448
- 4. Rs 4466
- Q:4 The longest side of a right triangle is 12 cm and the height is 10 cm. Find the area of the right triangle.
- 1. $5\sqrt{11}$ cm²
- **2.** $10\sqrt{11}$ cm²
- 3. $15\sqrt{11}$ cm²
- **4.** $\sqrt{11}$ cm²
- Q:5 The length of the body diagonal of the cuboid with a square base is $\sqrt{123}$ cm. If the sides of the cuboid are integers then, what is the sum of the length of all the edges?
- **1.** 52
- **2.** 76
- 3.100
- 4. None of these
- Q:6 A frustum of a cone has a base radius of 1.5cm and a height of 7cm. The radius of the top of the frustum is 0.5cm. Find the volume of the frustum.

- 1. 11.11cm³
- 2. 23.83cm³
- **3.** 27.85cm³
- **4.** 37.10cm³
- Q:7 The diameter of a 100 cm long roller, is 21 cm. If it takes 1200 complete revolutions to level a playground then, find the cost of leveling it at 50 paise per square meter.
- 1. Rs 396
- 2. Rs 484
- 3. Rs 516
- 4. Rs 325
- Q:8 The radius and the height of the cylinder are 7 cm and 12 cm respectively. The cylinder is smelted to make n number of small cones of radius 3.5 cm and height 2 cm. What is the value of n?
- **1.** 72
- **2**. 144
- **3**. 36
- **4.** 64
- Q:9 Find the total surface area of a cylinder whose radius is 15 cm and height is 12 cm. (Use $\pi = 22/7$)
- 1. 2645.7 cm²
- 2. 2545.7 cm²
- 3. 2145.7 cm²
- **4.** 2945.7 cm²
- Q:10 The cuboid's length, breadth, and height are in the ratio of 7:2:1, and the breadth of the cuboid is 8 cm. Find the total surface area of the cuboid.
- 1. 666 cm²
- 2. 336 cm²
- **3.** 736 cm²
- **4.** 636 cm²

Banking

WB Police WB Civil Services **Other Competitive Exams**

Date: 21st Dec 2023

Quantitative Aptitude - Mensuration

English

Answer Key

1. (1)	2 . (1)	3 . (1)	4. (2)	5. (4)	
6. (2)	7. (1)	8. (1)	9. (2)	10 . (3)	

Answers and Solutions

Q:1 The correct answer is Option 1 i.e. 1419624. We know that,

Volume of cylindrical part = $\pi r^2 h_1$

Volume of conical part = $(1/3)\pi r^2 h_2$

Since the radius is same and we have the total height,

Total volume = $\pi r^2 h_1 + (1/3)\pi r^2 h_2 = 4/3\pi r^2 (h_1 +$ h_2) or $(4/3)\pi r^2H$ (where H is total height) $= 4/3 \times 22/7 \times 56 \times 56 \times 108 = 1419264 \text{ cm}^3$

Q:2 The correct answer is option 1 i.e. 3 cm.

Let, the radius of the sphere be r

Here, 14(Volume of sphere) = Volume of cuboid

$$\Rightarrow 14 [(4/3) \pi r^3] = 1 \times b \times h$$

$$\Rightarrow$$
 14 [(4/3) (22/7) r³] = 16 × 11 × 9

$$\Rightarrow$$
 r³ = (16 × 11 × 9 × 3 × 7)/(14 × 4 × 22)

$$\Rightarrow$$
 r³ = $\stackrel{\cdot}{27}$

Hence, the radius of the sphere = 3 cm

Q:3 The correct answer is option 1 i.e. Rs 6336. Formula:

Area of the curved surface = $2\pi rh$

Given:

Diameter = 32 meters

So, Radius = 32/2 = 16 meters

Height = 42 meters

Cost = 1.5 rupees per square meter

Area of the curved surface = $[2 \times (22/7) \times 16 \times$

42] = 4224 sq. m

 \therefore Cost of painting = Rs (4224 × 1.5) = Rs 6336

Q:4 The correct answer is **Option 2** i.e. $10\sqrt{11}$ cm². Given:

The longest side of a right triangle is 12 cm =Hypotenuse

Height = 10 cm

Using Pythagoras theorem, the base can be calculated as follows:

$$(Hypotenuse)^2 = (Base)^2 + (Height)^2$$

$$(12)^2 = (Base)^2 + (10)^2$$

$$(Base)^2 = 12^2 - 10^2$$

$$(Base)^2 = 144 - 100$$

$$(Base)^2 = 44$$

Hence, Base = 2√11 cm

Therefore, the base of the right triangle is $2\sqrt{11}$ cm. Area of right triangle = $(\frac{1}{2}) \times b \times h$ square units

Substituting the values in the formula, we get

$$A = (\frac{1}{2}) \times 2\sqrt{11} \times 10 \text{ cm}^2$$

$$A = 10\sqrt{11} \text{ cm}^2$$

Therefore, the area of the right triangle is $10\sqrt{11}$ cm².

Q:5 The correct answer is option 4 i.e. None of these.

Let the sides of the cuboid be a, a, and b respectively

Length of diagonal of the cuboid = $\sqrt{(a^2 + a^2 + b^2)}$

$$= \sqrt{123} \text{ cm}$$

$$\Rightarrow$$
 2a² + b² = 123 cm

By hit and trial, you would get,

$$\Rightarrow$$
 a = 1, b = 11

$$\Rightarrow$$
 a = 7, b = 5

Thus sum of lengths could be = 11 + 2 = 13 cm or 5 + 14 = 19 cm

So, the answer will be none of these

Q:6 The correct answer is option 2 i.e. 23.83cm³ The volume of the frustum of the cone = $(1/3)\pi H(r^2 + r'^2 + r \times r')$

Where H is the height, r and r' are the radius at the base and top respectively.

$$\Rightarrow (1/3)\pi H(r^2 + r'^2 + r \times r')$$

$$\Rightarrow (1/3) \times (22/7) \times (7) \times ((1.5)^2 + (0.5)^2 + 1.5 \times 0.5)$$

$$\Rightarrow$$
 (22/3) × (2.25 + 0.25 + 0.75)

$$\Rightarrow$$
 23.83cm³

Q:7 The correct answer is Option 1 i.e. Rs 396.

The surface area of the cylinder = $2\pi rh$

Total area for leveling the ground = Number of revolutions × Surface area

The cost of leveling = Cost per unit × total area Radius of the roller = 21/2 cm and, its length = 100

Area covered by the roller in 1 revolution

 \Rightarrow 2 (22/7) (21/2) × 100 = 6600 cm²

thedronas.com

GET IT ON

Banking

WB Police

WB Civil Services

Other Competitive Exams

Date: 21st Dec 2023

Quantitative Aptitude - Mensuration

English

Area covered by the roller in the 1200 revolution \Rightarrow 1200 × 6600 = 7920000 cm² = 792 m² The cost of leveling the ground \Rightarrow 792 × (50/100) = Rs.396

Q:8 The correct answer is option 1 i.e. 72 The volume of the cylinder = $\pi r^2 H$ \Rightarrow (22/7) × 7 × 7 × 12 \Rightarrow 1848 cm³ The volume of the cone = $(1/3)\pi r^2H$ \Rightarrow (1/3) \times (22/7) \times 3.5 \times 3.5 \times 2 \Rightarrow 77/3 cm³ Number of cones formed = 1848/(77/3)⇒ 72 cones

Q:9 The correct answer is Option 2 i.e. 2545.7 cm² Radius of cylinder = 15 cm Height of cylinder = 12 cm Total surface area of cylinder = $2\pi r(h + r)$ (where, r = Radius and h = height of cylinder) Total surface area of cylinder = $2 \times 22/7 \times 15(12 +$ $15) = 2 \times 22/7 \times 15(27) = 2 \times 22/7 \times 15(27)$ $405 = 17820/7 = 2545.7 \text{ cm}^2$

Q:10 The correct answer is Option 3 i.e. 736 cm². The ratio of length, breadth, and height = 7:2:1=7x:2x:x Breadth = 8 cm \Rightarrow 2x = 8 $\Rightarrow x = 4$ So, length = 7x = 28 cm, breadth = 2x = 8 cm and height = x = 4 cm T.S.A of cuboid = 2(lb + bh + hl)here, I = length, b = breadth and h = height Total surface area of cuboid = $2(28 \times 8 + 8 \times 4 +$ \Rightarrow 2(224 + 32 + 112) = 2 × 368 = 736 cm²

thedronas.com

GET IT ON

