

Banking

WB Police **WB Civil Services** **Other Competitive Exams**

Date: 16th Jan 2024

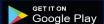
Quantitative Aptitude - Trains

English

- Q:1 The length of the platform on which the man is standing is 375 m. Train crosses the man in 14 sec with the speed of 110 km/hr. What will be the time taken by the train to cross the platform?
- 1. 20.19 sec
- 2. 22.34 sec
- 3. 26.26 sec
- 4. 25.47 sec
- Q:2 A train has a length of 124 m and it has to pass under the tunnel that is 2.9 km long in 2 minutes. What should be the speed of the train?
- 1. 29.8 m/sec
- 2. 25.2 m/sec
- 3. 31.4 m/sec
- 4. 35.6 m/sec
- Q:3 A trian crosses two platforms of length 230 m and 450 m in 9 sec and 15 sec respectively. What will be the length of the train?
- **1.** 100 m
- **2.** 120 m
- **3.** 130 m
- **4.** 150 m
- Q:4 Train A and B are running from Indore to Kolkata with the speed of 95 kmph and 108 kmph respectively. Train A starts an hour and a half before Train B. What will be the time taken by Train B to cross Train A?
- 1. 9 hours
- **2.** 8 hours
- **3.** 15 hours
- 4. 11 hours
- Q:5 Two cars were running at the speed of 25 km/h and 35 km/h respectively. If a train crosses these cars in time 4 sec and 6.5 sec respectively, what would be the speed of the train?
- **1.** 51 km/h
- 2. 48 km/h
- 3. 44 km/h
- 4.39 km/h
- Q:6 Train A and B travelling opposite to each other meet at point. Train B already covered 98 km more than A when they meet. If the speed of Train A and B is 45 kmph and 60 kmph respectively, what will be the distance

between their starting point?

- 1. 682.5 km
- 2. 650.7 km
- 3. 670.8 km
- 4. 634. 5 km
- Q:7 A cart standing on the platform is crossed by the engine of the train in 78 seconds at the speed of 66 km/hr. If the length of the train was 98 m, what will be the starting distance between the cart and the end point of the train?
- **1.** 1239.5 m
- 2. 1345.6 m
- **3.** 1524.4 m
- **4.** 1673.9 m
- **Q:8** The train moving at the speed of 72 km/h got broken down and after getting repaired it starts moving at the speed of 94 km/h. If the distance covered in 5 hours after repairing is x, how much time it will take to cover 4x/3 before repairing?
- 1.8.7 hours
- 2. 7.6 hours
- 3. 5.9 hours
- **4.** 6.9 hours
- 0:9 Train A leaves from P at 7 a.m. and reaches O at 4 p.m. on the same day. Another Train B leaves Q at 8 a.m. and reaches P at 6 p.m. on the same day. At what time do they meet?
- **1.** 4:13 p.m.
- **2.** 1 : 13 p.m.
- **3.** 12:13 p.m.
- 4. 2:13 p.m.
- Q:10 If a train goes from starting to its destination at a speed of 78 km/hr, it reaches 15 minutes late, If the same train travels at the speed of 94 km/hr, it is 15 minutes early. What is the distance between the starting point and the destination?
- 1. 209 km
- 2. 229 km
- 3. 234 km
- 4. 256 km


thedronas.com

Banking

WB Police

WB Civil Services

Other Competitive Exams

Date: 16th Jan 2024

Quantitative Aptitude - Trains

English

Answer Key

1 . (3)	2. (2)	3. (1)	4. (4)	5. (1)	
6. (1)	7. (3)	8. (1)	9. (3)	10 . (2)	

Answers and Solutions

Q:1 The correct answer is Option 3 i.e. 26.26 sec

Speed of train = 110 km/h

Time to cross a standing man = 14 sec

Length of platform = 375 meters

Distance = Speed × Time

Speed of train = 110 km/h = 110(5/18) m/sec

= 30.6 m/sec

The distance covered by a train to cross a standing

object is the length of the train itself.

Length of the train = Speed(Time) = 30.6(14) = 428.4 m

When the train crosses the platform of length 375 m -

Total distance covered by train = (375 + 428.4) m $= 803.4 \, \mathrm{m}$

Time to cross the platform = 803.4/30.6 = 26.26 sec

Q:2 The correct answer is Option 2 i.e. 25.2 m/sec

Length of the tunnel = 2.9 km = 2900 m

Time taken to cross the tunnel = 2 minutes = 120 sec

Distance = Speed × Time

The length of the train = 124 m

Let the speed of the train be x m/sec

Total distance = 2900 m + 124 m = 3024 m

⇒ 3024 = 120x

x = 3024/120 = 25.2 m/sec

Q:3 The correct answer is Option 1 i.e. 100 m.

Let the length of the train be x.

Speed of train = (length of platform + length of train)/time

According to question -

 \Rightarrow (230 + x)/9 = (450 + x)/15

 \Rightarrow 3450 + 15x = 4050 + 9x

 \Rightarrow 4050 - 3450 = 15x - 9x

 \Rightarrow 6x = 600

 \Rightarrow x = 100 m

Q:4 The correct answer is Option 4 i.e. 11 hours.

Speed of train A = 95 km/h

Speed of train B = 108 km/h

Train A starts an hour before Train B.

Distance = Speed(Time)

Distance covered by Train A in 1.5 hour = 95(1.5) = 142.5 km

Relative speed = 108 - 95 = 13 km/h [As running in the same direction]

Time taken by B to cross A = $142.5/13 = 10.96 \approx 11$ hours

Q:5 The correct answer is Option 1 i.e. 51 km/h.

Let the speed of the train be x km/h.

When the train crosses these cars it covers its own length.

Distance = Speed(Time)

Relative speed when train crosses 1st car = (x - 25) km/h

Relative speed when train crosses 2nd car = (x - 35) km/h

Time taken to cross 1st car = 4 sec = 4/3600 h Time taken to cross 2nd car = $6.5 \sec = 6.5/3600 h$

According to guestion-

 \Rightarrow (x - 25)(4/3600) = (x - 35)(6.5/3600)

 \Rightarrow 4x - 100 = 6.5x - 227.5

 \Rightarrow 6.5x - 4x = 227.5 - 100

 \Rightarrow 2.5x = 127.5

 \Rightarrow x = 127.5/2.5 = 51 km/h

Q:6 The correct answer is Option 1 i.e. 682.5 km

Speed of Train A = 45 km/h

Speed of Train B = 60 km/h

Train B covered 98 km more than A when they meet.

Distance = Speed(Time)

Let the time after which they meet be x hours.

According to question-

 \Rightarrow 60x - 45x = 98

⇒15x = 98

 \Rightarrow x = 6.5 hours

Distance between starting point = (Distance covered by train A) + (Distance covered by train B) = $[(45 \times 6.5) + (60)]$

 \times 6.5)] = 292.5 + 390 = 682.5 km

Q:7 The correct answer is Option 3 i.e. 1524.4 m

Speed of the train = 66 km/h = 66(5/18) = 18.3 m/s

Time taken by the train to cross the cart = 78 sec

Length of the train = 98 m

Distance = speed(time)

Distance covered in 78 sec = 18.3(78) = 1427.4 m

The starting distance of the cart from the end point of the

train = 1427.4 + 98 = 1525.4 m

thedronas.com

GET IT ON

Banking

WB Police

WB Civil Services

Other Competitive Exams

Date: 16th Jan 2024

Quantitative Aptitude - Trains

English

Q:8 The correct answer is Option 1 i.e. 8.7 hours

Speed of train after repairing = 94 km/hr

Speed of train before repairing = 72 km/hr

Distance covered by the train after repairing = x km

Time taken after repairing = 5 hours

Distance = Time(Speed)

Distance covered by the train after repairing = x km = 94(5) = 470 km

Distance covered by the train before repairing = 4x/3 =

4(470)/3 = 1880/3 = 626.7 km

Time taken by the train before repairing = 626.7/72 = 8.7 hours

Q:9 The correct answer is Option 3 i.e. 12:13 p.m.

Time taken by Train A to cover journey = 4 p.m. - 7 a.m. = 9 hours

Time taken by Train B to cover journey = 6 p.m. - 8 a.m. = 10 hours

Total distance from P to Q = LCM of 9, 10 = 90x km

Speed of Train A = 10x km/hr

Speed of Train B = 9x km/hr

Distance covered by Train A in an hours = 10x km

Remaining distance = 90x - 10x = 80x km

Time taken to meet each other = 80x/(10x + 9x) =

 $80/19 \text{ hrs} = 4^{4}/_{19} \text{ hrs} = 4 \text{ hours } 13 \text{ min}$

Time of meeting = 8:00 + 4:13 = 12:13 p.m.

Q:10 The correct answer is Option 2 i.e. 229 km.

Let the original speed of train be x.

Let the distance from starting point to destination be M.

Train goes from starting point to the destination at a speed of 78 km/hr, it reaches 15 minutes late.

According to question -

- \Rightarrow M/78 M/x = 15/60
- \Rightarrow M(1/78 1/x) = 1/4
- \Rightarrow M[(x 78)/78x] = 1/4
- \Rightarrow M = 78x/4(x 78)

Train goes from starting point to destination at a speed of 94 km/hr, it is 15 minutes early.

- \Rightarrow M/x M/94 = 15/60
- \Rightarrow M[(94 x)/94x] = 1/4
- \Rightarrow 78x(94 x)/[4(x 78)94x] = 1/4
- \Rightarrow 4[78x(94 x] = [4(x 78)94x]
- \Rightarrow 7332x 78x² = 94x² 7332x
- \Rightarrow 14664x = 172x²
- \Rightarrow x = 14664/172 = 85.26 km/hr

The distance between the starting point and the destination = 78x/4(x - 78) = 78(85.26)/4(85.26 - 78) =6650.28/4(7.26) = 6650.28/29.04 = 229 km

thedronas.com

GET IT ON

