

WB Police

WB Civil Services

Other Competitive Exams

Date: 30th Nov 2023

Quantitative Aptitude - Trigonometry

English

Q:1 From the top of a cliff 60 m high, the angle of depression of the top and bottom of a tower is observed to be 30° and 60° respectively. Find the height of the tower.

- 1. 20 m
- 2.60 m
- 3.80 m
- **4.** 40 m

Q:2 If $\left[\sin^2\theta + \cot^2\theta - \cos^2\theta + \csc\theta\right] = 9/2$, then find the value of $\cos 2\theta$.

- 1. $\sqrt{3/2}$
- **2**. 1/2
- **3.** 0
- 4.1

Q:3 If $\cos(a - b) = 3\cos(a + b)$, then what is the value of tan a tan b?

- **1.** 0
- 2. 1/2
- 3.1
- **4**. -1

Q:4 In the following figure, CD is a building that is two-thirds taller than another building AB, which is 30√3 m away from it. If the angle of inclination from the top of building AB to the feet of CD is 60°, what is the value of the angle of declination from the top of building AB to the top of building CD?

- **1.** 15°
- 2. 22.5°
- 3.60°
- **4.** 30°

Q:5 If
$$8\sin^2\theta + 14\sin\theta - 15 = 0$$
 then, find the value of $\sqrt{\csc\theta - \sin\theta + \cot^2\theta}$.

- **1.** 36/49
- **2.** 49/36
- **3.** 7/6
- **4.** 6/7

Q:6 A coconut tree is 90 feet high it is broken by the wind and its upper part meets the ground at an angle of 30°. Find the distance of the point where the top of the tree meets the ground from its root.

- 1. 30√3 feet
- 2. 36\/3 feet
- **3.** $24\sqrt{3}$ feet
- **4.** 27√3 feet

Q:7 In an instant, the length of the shadow of a tree is the square root of 3 times the height of the tree. Find the angle of elevation.

- 1. 15°
- 2.30°
- 3. 45°
- 4.60°

Q:8 If $(\sin A = \cos 30^\circ)$, what is the value of (2tan²A - tan45°), given that A is an acute angle?

- 1.5 2. 4
- **3**. 2 **4**. 0

Q:9 The angle of elevation of the top of a wall from point P on the track is 30°. On moving a distance of 72 m towards the foot of the wall, the angle of elevation increases to 45°. Find the height of the wall.

- 1. $72(\sqrt{3} + 1)$ m
- 2. $36(\sqrt{3} + 1)$ m
- 3. $18(\sqrt{3} + 1)$ m
- **4.** 36 m

Q:10 If $\cot (A + C) + \cot B = 0$, then what is the value of $(\tan A + \tan B + \tan C)/(\tan A \tan B \tan C)$ C)? $(A + B + C \le \Pi)$

- **1.** 0
- **2**. -1

thedronas.com

GET IT ON

Date: 30th Nov 2023

Banking

WB Police

WB Civil Services

Other Competitive Exams

Quantitative Aptitude - Trigonometry

English

3. 1

4. 3

WB Police

WB Civil Services

Other Competitive Exams

Date: 30th Nov 2023

Quantitative Aptitude - Trigonometry

English

Answer Key

1. (4)	2. (2)	3. (2)	4. (3)	5 . (3)	
6. (1)	7. (2)	8. (1)	9. (2)	10 . (3)	

Answers and Solutions

Q:1 The correct answer is Option 4 i.e. 40 m. Let, AB be the cliff and CD be the height of the tower

In triangle ABD, we have

 $tan 60^{\circ} = AB/BD$

$$\Rightarrow \sqrt{3} = 60/BD$$

BD =
$$60/\sqrt{3}$$
 = EC(i)

In triangle AEC,

 $tan 30^{\circ} = AE/EC$

$$\Rightarrow 1/\sqrt{3} = AE/(60/\sqrt{3})$$

$$\Rightarrow$$
 AE = $1/\sqrt{3} \times 60/\sqrt{3} = 20$

Hence.

$$CD = (AB - AE) = (60 - 20) = 40 \text{ meters}$$

Q:2 The correct answer is Option 2 i.e. 1/2.

$$[\sin^2\theta + \cot^2\theta - \cos^2\theta + \csc\theta] = 9/2$$

Put $\theta = 30^{\circ}$

$$\Rightarrow [(1/2)^2 + (\sqrt{3})^2 - (\sqrt{3}/2)^2 + (2)] = 9/2$$

$$\Rightarrow [(1/4) + (3) - (3/4) + (2)] = 9/2$$

$$\Rightarrow (1 + 12 - 3 + 8)/4 = 9/2$$

 $\Rightarrow [18/4] = 9/2$

$$\Rightarrow 9/2 = 9/2$$

Hence, $\theta = 30^{\circ}$

Now.

$$\Rightarrow$$
 Cos $2\theta = x$

$$\Rightarrow$$
 Cos $(2 \times 30^{\circ}) = x$

⇒ Cos 60° =
$$1/2$$

Hence,
⇒ Cos $2\theta = 1/2$

Q:3 The correct answer is Option 2 i.e. 1/2.

$$\Rightarrow$$
 cos (a - b) - cos (a + b) = 2 sin a sin b

$$\Rightarrow$$
 cos (a + b) + cos (a - b) = 2 cos a cos b

$$\Rightarrow \{\cos(a-b) - \cos(a+b)\}/\{\cos(a+b) + \cos(a-b)\} = (\sin a \sin b)/(\cos a \cos b)....(1)$$

$$\frac{1}{1} \cos \left(\frac{1}{2} \right) = \frac{1}{2} \cos \left(\frac{1}{2} \right) \left[\frac{1}{2} \sin \frac{1}{2} \right]$$

If
$$cos(a-b) = 3 cos(a+b)$$
 [given]

$$\Rightarrow \{3\cos(a+b) - \cos(a+b)\}/\{3\cos(a+b) + \cos(a+b)\} = \tan a \tan b [From (1)]$$

$$\Rightarrow \frac{1}{2} = \tan a \tan b$$

Q:4 The correct answer is Option 3 i.e. 60°.

In triangle ABC,

∠ACB = 60°

 $tan \angle ACB = AB/BC$

 $\tan 60^{\circ} = AB/(30\sqrt{3})$

$$AB = 30\sqrt{3} \times \sqrt{3} = 90 \text{ m}$$

$$\therefore$$
 CD = $2/3 \times AB = 60 \text{ m}$

$$AE = (90 - 60) = 30 \text{ m}$$

In triangle AED

tan ∠ADE = AE/ED

$$\Rightarrow 30/(30\sqrt{3}) = 1/\sqrt{3}$$

Now angle of declination = $\angle EAD = (180 - 90 - 30)$ = 60°

Q:5 The correct answer is Option 3 i.e. 7/6.

 $8\sin^2\theta + 14\sin\theta - 15 = 0$

$$\Rightarrow 8\sin^2\theta + 20\sin\theta - 6\sin\theta - 15 = 0$$

$$\Rightarrow 4\sin\theta(2\sin\theta + 5) - 3(2\sin\theta + 5) = 0$$

$$\Rightarrow$$
 (2sin θ + 5) (4sin θ - 3) = 0

$$\Rightarrow$$
 sin θ = 3/4, and -5/2(Can't possible)

$$\Rightarrow$$
 sin θ = 3/4 = P/H

$$\Rightarrow$$
 B = $\sqrt{16-9} = \sqrt{7}$

So, the value of $\csc\theta - \sin\theta + \cot^2\theta = 4/3 - 3/4 + \cot^2\theta$ 7/9 = 49/36

$$\Rightarrow \sqrt{\csc \theta - \sin \theta + \cot^2 \theta} = 7/6$$

Q:6 The correct answer is Option 1 i.e. $30\sqrt{3}$ feet.

thedronas.com

GET IT ON

WB Police

WB Civil Services

Other Competitive Exams

Date: 30th Nov 2023

Quantitative Aptitude - Trigonometry

English

Given:

Total height of tree = 90 feet

Let upper broken part = BC = CD = x feet

 \therefore Remaining part = AC = (90° - x) feet

In △ACD

 $\sin 30^\circ = AC/CD$

 $\Rightarrow 1/2 = (90^{\circ} - x)/x$

 \Rightarrow x = 180° - 2x

 \Rightarrow 3x = 180°

 $\Rightarrow x = 60^{\circ}$

 $CD = x = 60^{\circ}$ feet

 $AC = 90^{\circ} - x = 90^{\circ} - 60^{\circ} = 30^{\circ}$ feet

: Required distance

 $AD(d) = \sqrt{(60)^2 - (30)^2} = 30\sqrt{3}$

Q:7 The correct answer is Option 2 i.e. 30°.

Let,

The height of the tree = AB = x meters

According to the question-

Length of the shadow of the tree = BC = $\sqrt{(3)}x$ meters

By applying,

$$\Rightarrow \tan\theta = P/B = x/[\sqrt{3}x] = 1/\sqrt{3}$$

$$\Rightarrow \tan\theta = 1/\sqrt{3}$$

$$\Rightarrow$$
 tan θ = tan30°
So, θ = 30°
Hence, the angle of elevation = 30°

Q:8 The correct answer is Option 1 i.e. 5.

 \Rightarrow Sin A = cos30° or,

 \Rightarrow Sin A = cos (90° - 60°) or,

 \Rightarrow Sin A = sin 60°

So,

 $\Rightarrow A = 60^{\circ}$

Now, Put $A = 60^{\circ}$ in $[2\tan^2 A - \tan 45^{\circ}]$, we get

 \Rightarrow $(2(\sqrt{3})^2 - 1)$ [where tan45° = 1 and tan60° = √3Ì

 \Rightarrow (2 × 3 - 1)

 \Rightarrow (6 - 1) = 5

Q:9 The correct answer is Option 2 i.e. $36(\sqrt{3} + 1)$

 $tan30^{\circ} = 1/\sqrt{3}$ and, $tan45^{\circ} = 1$

Distance moved = 72 m In ∆ BCD.

⇒ tan 45°= DC/BC

So, DC = BC $(tan45^0 = 1)$ and,

In AACD.

 \Rightarrow tan 30° = CD/AC

In
$$\triangle$$
 BCD
Let, DC = x

 \Rightarrow tan 45° = DC/BC

 $\Rightarrow 1 = x/BC$

 \Rightarrow BC = x

And,

 \Rightarrow tan 30° = CD/AC

 $\Rightarrow 1/\sqrt{3} = x/(72 + x)$

 \Rightarrow 72 + x = $\sqrt{3}$ x

 $\Rightarrow (\sqrt{3} - 1)x = 72$

thedronas.com

GET IT ON

WB Police

WB Civil Services

Other Competitive Exams

Date: 30th Nov 2023

Quantitative Aptitude - Trigonometry

English

⇒ x =
$$72/(\sqrt{3} - 1)$$

Rationalize the denominator = $72/(\sqrt{3} - 1) \times (\sqrt{3} + 1)/(\sqrt{3} + 1)$
⇒ x = $36(\sqrt{3} + 1)$ m
Hence, the height of the wall is $36(\sqrt{3} + 1)$ m

Q:10 The correct answer is Option 3 i.e. 1.

$$\Rightarrow$$
 cot (A + C) = - cot B

$$\Rightarrow$$
 cot (A + C) = cot (π - B)

$$\Rightarrow$$
 A + C = π - B

$$\Rightarrow$$
 A + C + B = π

Now we know that if A + B + C = π = 180°

Then, the value of

$$\Rightarrow$$
 tan A + tan B + tan C = tan A tan B tan C

$$\therefore (\tan A + \tan B + \tan C)/(\tan A \tan B \tan C) = 1$$

thedronas.com

GETITON Google Play

