

Banking

WB Police WB Civil Services Other Competitive Exams

Date: 22nd Nov 2023

Special Question - Quantitative Aptitude

English

Directions 1 - 2: In the following question four equations are given in variables p, q, r, and s. You have to solve these equations.

I.
$$(2p + 2)(p + 4) = 0$$

II.
$$289q^2 - 360 = 1$$

III.
$$4r^2 - r - 5 = 0$$

IV.
$$2s^2 - 8s + 8 = 0$$

Q:1 Find the sum of the roots of equation IV and equation III.

- **1.** 4.25
- 2. 4.50
- **3.** 5.22
- **4.** 4.20
- **5.** 4.55

Q:2 Find the difference between the sum of all positive roots and the sum of all negative roots.

- 1.13.50
- **2.** 13.55
- **3.** 13.47
- 4.15.66
- **5.** 12.45

Direction 3 - 5: In the following question four equations are given in variables X, Y, P, and Q. You have to solve these equations.

I.
$$X^2 + 19X + 88 = 0$$

II.
$$Y^2 + 14Y + 48 = 0$$

III.
$$3P^2 - 8P - 11 = 0$$

IV.
$$Q^2 - 17Q + 42 = 0$$

Q:3 Find the product of the roots of the sum of both roots of P and Q.

- **1.** 136/3
- 2. 27/5
- **3.** 41/3
- **4.** 89/7
- **5.** 14/3

Q:4 What is the sum of the product of the smallest roots of P and Y and the product of the negative roots of X and Q?

- **1.** -105
- **2.** -179
- **3.** -146
- **4.** -123
- **5**. -117

Q:5 Determine the difference between the sum of both roots of X and Q and the sum of both roots of P and Y.

- **1.** 126/7
- **2.** 257/3
- 3.158/3
- **4.** 144/7
- **5.** 204/5

Asutosh Mukherjee Road, College Para, Hathi More, Siliguri, West Bengal +91 - 8436586516, +91-8436900456

thedhronas@gmail.com

thedronas.com

Banking

WB Police

WB Civil Services

Other Competitive Exams

Date: 22nd Nov 2023

Special Question - Quantitative Aptitude

(r+1)(4r-5)=0

English

Answer Key

1. (1) 2. (3) 3. (1) 4. (3) 5. (2)	2)
---	----

Answers and Solutions

Q:1 The correct answer is Option 1 i.e. 4.25.

Q.1 The correct driswer is
$$0$$
. $(2p + 2)(p + 4) = 0$
 $2p^2 + 8p + 2p + 8 = 0$
 $2p(p + 4) + 2(p + 4) = 0$
 $(2p + 2)(p + 4) = 0$
 $p = -1, -4$
II. $289q^2 - 360 = 1$
 $289q^2 = 361$
 $q^2 = 19/17$
 $q = +19/17, -19/17$
III. $4r^2 - r - 5 = 0$
 $4r^2 - 5r + 4r - 5 = 0$
 $r(4r - 5) + 1(4r - 5) = 0$
 $r = -1, 5/4$
IV. $2s^2 - 8s + 8 = 0$
 $2s(s - 2) - 4(s - 2) = 0$
 $(2s - 4)(s - 2) = 0$
 $s = 2, 2$

Now, according to the question

The Sum of the roots of equation III = -1 + 5/4 =

(-4 + 5)/4 = 1/4 = 0.25

The Sum of the roots of equation IV = 2 + 2 = 4

Hence, Sum = 0.25 + 4 = 4.25

Q:2 The correct answer is Option 3 i.e. 13.47.

I.
$$(2p + 2)(p + 4) = 0$$

 $2p^2 + 8p + 2p + 8 = 0$
 $2p(p + 4) + 2(p + 4) = 0$
 $(2p + 2)(p + 4) = 0$
 $p = -1, -4$
II. $289q^2 - 360 = 1$
 $289q^2 = 361$
 $q^2 = 19/17$
 $q = +19/17, -19/17$
III. $4r^2 - r - 5 = 0$
 $4r^2 - 5r + 4r - 5 = 0$
 $r(4r - 5) + 1(4r - 5) = 0$

r = -1,
$$5/4$$

IV. $2s^2 - 8s + 8 = 0$
 $2s^2 - 4s - 4s + 8 = 0$
 $2s(s - 2) - 4(s - 2) = 0$
 $(2s - 4)(s - 2) = 0$
s = 2, 2
Now, according to the question
The sum of all positive roots = $19/17 + 5/4 + 2 + 2$
 $(76 + 85 + 136 + 136)/68 = 433/68 = 6.36$
The sum of all negative roots = $(-1) + (-4) + (-4)$

$$(-19/17) + (-1)$$

 $(-17 - 68 - 19 - 17)/17 = -121/17 = -7.11$
Required difference = 6.36 - (-7.11) = 6.36 + 7.11 = 13.47

Q:3 The correct answer is option 1. i.e: 136/3

1.
$$X^2 + 19X + 88 = 0$$

 $\Rightarrow X^2 + 8X + 11X + 88 = 0$
 $\Rightarrow X(X + 8) + 11(X + 8) = 0$
 $\Rightarrow (X + 8)(X + 11) = 0$
 $\Rightarrow X = -8 \& -11$
11. $Y^2 + 14Y + 48 = 0$
 $\Rightarrow Y^2 + 8Y + 6Y + 48 = 0$
 $\Rightarrow Y(Y + 8) + 6(Y + 8) = 0$
 $\Rightarrow (Y + 8)(Y + 6) = 0$
 $\Rightarrow Y = -8 \& -6$
111. $3P^2 - 8P - 11 = 0$
 $\Rightarrow 3P^2 - 11P + 3P - 11 = 0$
 $\Rightarrow P(3P - 11) + 1(3P - 11) = 0$
 $\Rightarrow (P + 1)(3P - 11) = 0$
 $\Rightarrow P = -1, \frac{11}{3}$
1V. $Q^2 - 17Q + 42 = 0$
 $\Rightarrow Q^2 - 14Q - 3Q + 42 = 0$
 $\Rightarrow Q(Q - 14) - 3(Q - 14) = 0$
 $\Rightarrow (Q - 14)(Q - 3) = 0$
 $\Rightarrow Q = 14, 3$
Sum of both roots of $P = -1 + 11/3 \Rightarrow (-3 + 11)/3 = 8/3$

Product of both roots of P and Q = $8/3 \times 17 = 136/3$

Sum of both roots of Q = 14 + 3 = 17

Q:4 The correct answer is option 3. i.e: - 146
I.
$$X^2 + 19X + 88 = 0$$

 $\Rightarrow X^2 + 8X + 11X + 88 = 0$
 $\Rightarrow X(X + 8) + 11(X + 8) = 0$

thedhronas@gmail.com

GET IT ON

thedronas.com

Banking

WB Police

WB Civil Services

Other Competitive Exams

Special Question - Quantitative Aptitude

English

$$\Rightarrow (X + 8)(X + 11) = 0$$

Date: 22nd Nov 2023

$$\Rightarrow X = -8 \& -11$$

II.
$$Y^2 + 14Y + 48 = 0$$

$$\Rightarrow$$
 Y² + 8Y + 6Y + 48 = 0

$$\Rightarrow Y(Y+8)+6(Y+8)=0$$

$$\Rightarrow (Y + 8)(Y + 6) = 0$$

$$\Rightarrow$$
 Y = -8 & -6

III.
$$3P^2 - 8P - 11 = 0$$

$$\Rightarrow$$
 3P² - 11P + 3P - 11 = 0

$$\Rightarrow P(3P - 11) + 1(3P - 11) = 0$$

$$\Rightarrow (P+1)(3P-11)=0$$

$$\Rightarrow$$
 P = -1, $\frac{11}{3}$

IV.
$$Q^2 - 17Q + 42 = 0$$

$$\Rightarrow$$
 Q² - 14Q - 3Q + 42 = 0

$$\Rightarrow Q(Q - 14) - 3(Q - 14) = 0$$

$$\Rightarrow (Q - 14)(Q - 3) = 0$$

$$\Rightarrow$$
 Q = 14, 3

The product of the smallest roots of P and $Y = -1 \times$

-8 = 8

The product of the smallest root of X and the

largest root of $Q = -11 \times 14 = -154$

The sum = 8 + (-154) = 8 - 154 = -146

Q:5 The correct answer is option 2. i.e: 257/3

I.
$$X^2 + 19X + 88 = 0$$

$$\Rightarrow X^2 + 8X + 11X + 88 = 0$$

$$\Rightarrow X(X+8) + 11(X+8) = 0$$

$$\Rightarrow (X + 8)(X + 11) = 0$$

$$\Rightarrow X = -8 \& -11$$

The product of roots =
$$-8 \times (-11) = 88$$

II.
$$Y^2 + 14Y + 48 = 0$$

$$\Rightarrow$$
 Y² + 8Y + 6Y + 48 = 0

$$\Rightarrow Y(Y+8)+6(Y+8)=0$$

$$\Rightarrow (Y + 8)(Y + 6) = 0$$

The product of roots =
$$-8 \times (-6) = 48$$

III.
$$3P^2 - 8P - 11 = 0$$

$$\Rightarrow$$
 3P² - 11P + 3P - 11 = 0

$$\Rightarrow P(3P - 11) + 1(3P - 11) = 0$$

$$\Rightarrow (P+1)(3P-11)=0$$

$$\Rightarrow P = -1, \frac{11}{3}$$

The product of roots =
$$-1 \times 11/3 = -11/3$$

IV.
$$Q^2 - 17Q + 42 = 0$$

$$\Rightarrow$$
 Q² - 14Q - 3Q + 42 = 0

$$\Rightarrow Q(Q - 14) - 3(Q - 14) = 0$$

$$\Rightarrow$$
 (Q - 14)(Q - 3) = 0
 \Rightarrow Q = 14, 3

The product of roots =
$$14 \times 3 = 42$$

The sum of products of both roots of X and Q
$$= 88 + 42 = 130$$

And the sum of products of both roots of Y and
$$P = 48 + (-11/3) = 48 - 11/3 = 133/3$$

The difference =
$$130 - 133/3 = 257/3$$

thedhronas@gmail.com

thedronas.com